
Original Article

A survey of multiple tree visualisation

Martin Graham∗ and
Jessie Kennedy
School of Computing, Napier University,
10 Colinton Road, Merchiston, Edinburgh,
Lothian, EH10 5DT, UK.
E-mails: m.graham@napier.ac.uk;
kennedy@napier.ac.uk

∗Corresponding author.

Received: 22 December 2008
Revised: 3 July 2009
Accepted: 23 July 2009

Abstract This article summarises the current state of research into multiple
tree visualisations. It discusses the spectrum of current representation tech-
niques used on single trees, pairs of trees and finally multiple trees, in order
to identify which representations are best suited to particular tasks and to find
gaps in the representation space, in which opportunities for future multiple
tree visualisation research may exist. The application areas from where
multiple tree data are derived are enumerated, and the distinct structures that
multiple trees make in combination with each other and the effect on subse-
quent approaches to their visualisation are discussed, along with the basic
high-level goals of existing multiple tree visualisations.
Information Visualization advance online publication, 5 November 2009;
doi:10.1057/ivs.2009.29

Keywords: multiple trees; layout techniques; survey

Introduction

Tree visualisation has been one of the staples of Information Visualisation
(IV) since its inception, inspiring myriad variations in terms of layout styles
and interaction techniques. The bulk of this research has been performed
on single tree instances, yet as more data are produced that requires users to
navigate through multiple tree classifications or to understand the complex
interaction of several tree structures, an increasing number of situations
call for the analysis and comparison of multiple tree structures – tasks to
which IV techniques can also be successfully applied.

There have been attempts to categorise tree visualisation literature by
criteria such as layout style, interaction technique and data type in previous
survey papers. Again, however, most of them concern themselves with
only the visualisation of single trees. Noik1 provides an early survey and
classification system of graph presentation techniques, including trees,
primarily focused on classifying by focusing and filtering attributes, and
is too early for multiple tree visualisations to have registered in the litera-
ture. Later, Herman et al2 surveyed the graph visualisation literature from
an IV perspective, grouping techniques by interaction and layout style
rather than through the more formal algorithmic perspective favoured in
traditional graph drawing domains. Their examples cover mostly restricted
graphs including trees along with directed acyclic graphs (DAGs) and other
graphs derived from general graphs. As with Noik, the survey does not
include any examples of multiple tree visualisations due to the survey now
being several years old. More recently, PhD and Masters’ theses regarding
tree visualisation such as Nguyen3 and Nussbaumer4 include background
chapters summarising the state-of-the-art at the time, but again cover only
single tree visualisations.

Graham’s thesis5 includes a background chapter on multiple tree visu-
alisation as it existed in 2001 but, as much of the work on the topic has
occurred since then, recent work has not yet been summarised or explored
comprehensively. As such, this article aims to act as a survey paper for

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18
www.palgrave-journals.com/ivs/



Graham and Kennedy

the field, collecting and summarising the current state-
of-the-art in multiple tree visualisation. We begin by
describing the areas in which multiple tree data are to be
found and the different types of structure formed by over-
lapping trees. Then we give a brief summary of single tree
visualisation before moving on to two-tree and multiple
tree visualisations in greater detail, discussing the tech-
niques used to display and interact with these structures
and their associated advantages and disadvantages. From
the review of such work we summarise the basic tasks
that multiple tree visualisations are attempting to allow
users to perform.

Application Areas

The primary sources of data, and therefore application
areas, for multiple tree visualisations are bioinformatics,
faceted classifications, schema/ontology mapping and
software development. These are fields with a common
thread of re-classification or re-categorisation that
produce in some form or other multiple tree data sets
that users are interested in analysing for finding patterns,
editing relationships or using as mechanisms for querying
data.

In bioinformatics, analyses of species relationships
produce multiple conflicting phylogenies and taxonomies
over the same or overlapping groups of species; each
instance being a model of evolutionary or morphological
similarity between those species. Constantly, new classifi-
cations are produced over previously classified data due to
the discovery of new species and the development of new
analytic techniques. Currently, reconciling such struc-
tures relies on producing consensus trees6 that accent
shared structure but omit unique details of individual
tree structures in the process, even though practitioners
regard each conflicting classification as legitimate in its
own right.

Hierarchically faceted classifications7 occur when
items can be filtered by multiple hierarchically organ-
ised attributes, with the most common example being
internet shopping sites where products are classified by
price, type, maker and so on. We must be careful to
distinguish between flat facets – those facets that group a
set of objects according to one level of categorisation, for
example manufacturer (Dell, HP, Viglen and so on) – and
hierarchical facets that have multiple levels of categori-
sation – an ‘operating systems’ facet can have Windows,
Mac OS and Linux at the top level, and in turn Windows
can have sub-categorisations of Vista, XP, 98, 95 and
so on. It is the hierarchical facets that are of interest to
us, as a collection of such facets can be understood as a
collection of multiple, overlapping trees.

Hierarchical facets are similar to biological taxonomies
in that multiple hierarchies are constructed over a set of
objects, though there are two distinct differences. Firstly,
each faceted classification will include all the objects
in a set, even if some objects end up being assigned to

an ‘unknown’ or ‘other’ group within a classification,
whereas biological taxonomies may only roughly overlap
on the object set rather than match completely. Secondly,
the problem for users with biological classifications is
trying to reconcile these different views of the data,
whereas with faceted classifications the ability to filter
through multiple trees, as seen, for example, in Sifer,8 is
an aid to the end user, designed to free users from just
the one way of browsing or interrogating data. We can
say such classifications are complementary rather than
conflicting in purpose.

Research into ontologies and semantic web issues has
looked at the problem of schema or ontology mapping,9

where the challenge is to find the best match between
the various parts of related schemas or ontologies. XML
schemas are hierarchical, and while ontologies are more
complex they do contain major tree-based structures such
as concept and relation hierarchies. As such, they can
often have mapping issues that fit into the domain of
multiple trees as seen in Aumueller et al.10 Mapping can
be automated to various extents by name and structure
analysis and also by applying further ontologies that form
a semantic bridge between different schemas, but an asso-
ciated visualisation as in Altova’s MapForce product11 and
Wang et al’s SCSI application12 supplies a mechanism for a
human expert to validate relationships and, more impor-
tantly, to resolve instances that are not amenable to auto-
matic methods.

Lastly, software development versioning systems such
as CVS produce snapshots of classes and packages that
are organised hierarchically, and software developers may
wish to compare these snapshots to track package growth
and discover where development effort was concentrated
at any particular time. As computer scientists like to
solve their own problems first, there have been many
attempts to visualise software evolution, an early example
being Eick et al’s SeeSoft system.13 These tools in turn
are advances on visual diff tools that analyse source files
or directories to discover differences. For directories and
hierarchically structured files such as XML, the problem
again becomes one of mapping between multiple trees.
Software visualisation undoubtedly covers a much wider
area than simply revisions of package/class hierarchies,
but of those that do examine this aspect, Gîrba et al’s
work14 attempts to explicitly show the evolution of
hierarchical structures alongside other attributes in code
repositories, and Wu et al15 display CVS package hierar-
chies as adjacent entities for user examination.

The semantics of a data set make a difference to the
choice of multiple tree visualisations to use, and probably
the most basic dichotomy in tree data semantics is in the
difference between internal and leaf nodes. In a biological
taxonomy, every node is simply a container for the nodes
below it and leaf nodes are nothing special in this respect,
they are merely the same type of node except they have
zero child nodes. In contrast, class hierarchies in software
visualisation have the actual classes (compiled code) as
leaves and the internal nodes are arbitrary categorisations

2 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

of those classes, thus there is a semantic difference in this
case between leaf and internal nodes.

Together with basic research into new IV techniques,
investigations into handling data from these domains
accounts for the vast majority of literature in multiple
tree visualisation.

Multiple Tree Structures

The logical structures formed by merging multiple trees
dwell in the messy domain between single tree structures
and general graphs; the exact type of structure formed
depends on the trees’ node overlap characteristics and
structural similarity. The starting point is to define what
a tree itself is, with one formal definition being that it
is an undirected graph structure with one path and one
path only between any pair of nodes in the graph. It must
thus be acyclic as the presence of cycles would produce
multiple possible paths between some nodes in an undi-
rected graph. The more common, colloquial definition
is to think of a tree as a rooted structure, starting at a
root node that may have zero or more children nodes
linked to it. In turn each of these nodes can link to other
child nodes, so that each node has one parent node only
(except the root, which has no parent) and zero or more
children nodes. IV literature tends to freely swap the terms
‘tree’ and ‘hierarchy’ even though hierarchies are not
always trees, though others are tighter by referring to a
‘hierarchical tree’. The essential difference is the presence
of multiple inheritance as found in pedigrees16 or class

a b

dc

Figure 1: Structures that multiple trees can make through node overlap – (a) Forest, (b) Multitree, (c) DAMG and (d)
Polyarchy.

hierarchies17 – an entity can have one or more parents in
a hierarchy, but only one in the strict definition of a tree.

There are four basic structures that can be constructed
if we consider direct node overlap only, shown in
Figure 1, where these structures fit in a subsumption
hierarchy of restricted graph structures as outlined in
McGuffin and Schraefel.18

The simplest case is that where no node overlap occurs
between a set of trees. The resulting structure is a forest,
a collection of disjoint trees as shown in Figure 1(a),
though as discussed later other relationships may yet
exist between the trees.

Trees that only share leaf nodes form Multitrees as
envisaged by Furnas and Zacks19 and also demonstrated
in Wittenburg et al20; related phylogenies fall into this
category, as do faceted classifications, in which the
same group of objects are categorised under different
classifications.21 Multitrees also capture situations where
trees reuse fragments of other classifications instead of
building new structures where a previously defined struc-
ture already resides, shown in Figure 1(b). The prime
example of this type of structure are family trees as visu-
alised by McGuffin and Balakrishnan;22 one person’s
descendants may overlap with another, but the structure
of the parts that do overlap will be the same.

Tree collections whose shared interior nodes are subject
to restructuring can be divided into two categories
depending on whether there is a global parent-node
orientation across the trees. If there is a global orientation
then the multiple trees form a DAG, or a multi-DAG as
seen in Figure 1(c) if multiple edges are kept distinct, such

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 3



Graham and Kennedy

Figure 2: Inter-tree links defined between non-overlapping
nodes.

as those produced by Graham’s multiple taxonomies.5 For
example, a biological taxonomy may reuse internal nodes
such as kingdoms and genera from another taxonomy but
then construct its own paths between them by defining
other internal nodes; however, a global parent-child orien-
tation is preserved, as a genus will always be lower down
than a kingdom in any taxonomic tree, never the other
way round.

If there is no global orientation shared between the
structures, then the combined trees form a polyarchy
structure (Figure 1(d)) as identified by Robertson et al23

and used by Conklin et al’s drill-down data browser.24

Here the distinction between leaf nodes and internal
nodes across trees breaks down; nodes that form parent-
child relationships in one tree may end up forming the
inverted relationship in another tree, or be siblings in
yet another tree or unrelated altogether; leaf nodes in
one tree may well be internal nodes in another and
vice versa.

For many scenarios, simple node overlapping does not
adequately describe the mapping between the trees. In
these cases, the mapping is described through inter-tree
edges that relate the trees to each other. These rela-
tions can either be one-to-one or one-to-many as shown
in Figure 2, and can also have data such as typing or
weighting associated with those edges. For example,
in biological taxonomy there can be explicit relations
defined between nodes in different classification trees, as
detailed in Graham and Kennedy,25 which are deduced
by field experts. These links can indicate a spectrum of
different relations based on set notation such as, congru-
ence, dissimilarity and so on, and one node may be the
source or target of several links involving one or more
other trees. What appears to be a collection of disparate
trees from the perspective of node sharing, now reveals a
complex tree-based graph structure.

Ontology and schema matching visualisations, such
as Dadzie and Burger’s mouse ontology viewer,26 display
similarly complex relationships. These relationships can
be generated by various means such as comparing element
names, structural similarities or analysing semantic simi-
larities as seen in Cruz et al27 – in a simple example a single
full name element in one schema matches to a combina-
tion of first and last name elements in another. Similar
relationships can also occur in software versioning, in
which renaming or refactoring may give the same class
or method different names between different releases,
or cause classes to be split or joined together between

different releases. Tu and Godfrey28 describe matching
such files by a joint comparison of software metrics and
name string matching between files.

Representations

The most noticeable variable in multiple tree visualisa-
tions is the representation used to show and allow inter-
action with multiple tree structures. The representations
can be based on layouts used for individual trees or on
layouts designed for restricted graphs, such as DAGs, or
adapted from those used to display more general graph
structures. Some of the options often used for single trees,
such as node-link representations are applicable to more
complex graph structures such as multiple trees, and the
widespread use of the small multiple29 technique means
that single tree representations often feature prominently
in multiple tree visualisations. Therefore we begin our
representation section with a quick discussion of single
tree representation styles, which is by no means exhaus-
tive in its coverage of the literature. For a fuller review
of single tree visualisations we recommend the theses
referenced in the introduction such as Nguyen3 and
Nussbaumer.4

Single trees

Single tree visualisations have a long history before the
coining of the term ‘Information Visualization’, a classic
reference being Reingold and Tilford’s30 work, itself
only one of many pre-1990 algorithms listed in Beebe’s
exhaustive bibliography31 for tree drawing. However,
these approaches tended to focus exclusively on layout
algorithms; what IV introduced was the notion of being
able to interact with the generated tree visualisations.

Single tree layout divides into a number of cate-
gories, based on the graphical method used to indicate
a parent–child relationship, five of which are shown in
Figure 3. The first and most widespread is the node-link
layout,30,32 with parent–child relations represented as
lines (links) drawn between the visual objects that repre-
sent the nodes in the tree. Secondly, nested or enclosure
layouts33,34 indicate the same relationship by placing
child node representations within the boundaries of their
parent node. Thirdly, there is the adjacency layout or
icicle plot35 style where child nodes are drawn as abutting
their parent node. This method, more than the node-link
approach, requires the definition of a parent–child orien-
tation to differentiate parent–child relations from sibling
relationships and to indicate the direction of a relation-
ship. Usually this orientation is either top-down as in
Graham and Kennedy’s taxonomy browser25 or centre-
out as in Stasko et al.36 All three of these layout styles
have been extended from their original 2D projection to
3D variants with various degrees of success: node-link,37

nested38 and adjacency.39

4 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

a

d

b c

e

Figure 3: Basic types of tree representation – (a) node-link,
(b) nested, (c) adjacency, (d) indented list and (e) matrix
representations.

A fourth representation style is indentation, in which
nodes are listed linearly in order of depth-based traversal
and then indented by an amount proportional to their
depth in the tree. Often, stylised links are drawn to make
parent–child relationships clearer, but this is not always
the case. This is the most common form of tree display
used in contemporary graphical user interfaces (GUIs),
seen in locations such as the folders view of Microsoft
Windows Explorer. In empirical evaluation by Cockburn
and Mackenzie40 this layout has shown to be the objec-
tively preferred choice when compared to other styles of
tree visualisation, though Kobsa41 suggested that much
of this performance advantage is explained by familiarity
because of the ubiquitous presence of Microsoft Windows.

Finally, individual trees can also be displayed via a
matrix representation, but this tends to be less common
than the previous styles for good reason. Firstly, this
is because of the difficulty in following edge paths in
matrices, as recognised by Shen and Ma.42 In Figures 3(a),
(c) and (d), it is clear that D is a ‘grandchild’ of A, and
while slightly trickier in the case of the nested repre-
sentation in Figure 3(b) (Lü and Fogarty43 discuss how
variation in nested representations can greatly affect
this property), in the matrix representation the A–B and
B–D edges need to be discerned independently and then
combined, making the relationship much more diffi-
cult to deduce. A second issue is that essentially a single
tree is not complicated enough in structure to warrant
a matrix representation. One of the main reasons cited
for using matrices to visualise graph types is that they
eliminate edge crossings that occur in other graph repre-
sentations, but a single tree can always be drawn with
no edge-crossings in the other representations and so
this reason no longer applies. Further to this point, a tree
with N nodes has N − 1 edges, and thus when displayed
as a matrix will only fill the square root of the total N2

possible entries, making it highly space-inefficient.
All the layout styles have associated advantages

and disadvantages and the choice of representation is

depending on the tasks that are to be performed with
the structures and the semantics of the data concerned.
Generally node-link representations are more understand-
able to the lay-person and communicate structure readily,
but use up screen space rapidly. Nested representations
allow more nodes to be displayed at once but structure is
more difficult to perceive due to lacking a global child-
parent orientation, plus they emphasise leaf nodes at the
expense of internal nodes. The adjacency and indented
list methods strive for a halfway house between these two
styles, utilising a higher proportion of screen space than a
node-link display, yet making structure relatively simple
to follow. Finally, the matrix reduces the tree essentially
to a look-up table. These basic layout styles are the foun-
dation for all tree visualisations that display internal tree
structure, and the styles themselves can be combined
within a visualisation of a single tree as demonstrated by
Zhao et al,44 in which portions of the tree are drawn as
either nested or node-link representations dependent on
screen space and user interaction. Further, Nguyen and
Huang’s EncCon technique.45 combines the enclosure
and node-link approaches across an entire tree; the tree
nodes being positioned using an optimised nested layout
algorithm and then connected with links.

Multiple tree models × Multiple tree representations

A logical starting point to categorise multiple tree visual-
isations is to distinguish whether ‘multiplicity’ is based
on the number of trees displayed, or the number of trees
modelled in the structure, or both. Table 1 shows a brief
tabular summary of this categorisation and the four basic
cases it produces – with the simplest case of a single tree
model represented as a single tree visualisation being
covered in the previous section.

The second case covers the scenario of one tree model
visualised many times; for instance Wilson and Bergeron’s
dynamic hierarchy visualization46 can display multiple,
differing representations of the same hierarchy, but does
not display multiple structures. A similar caveat applies
to Urbanek’s KLIMT system,47 Schedl et al’s48 stacked
radial tree visualisation and Teoh’s more recent work49

on multiple views for trees. Kules et al50 explore the
situation of simultaneously using two different, linked
representation styles of the same tree – one nested and
one node-link representation.

Of more interest to us are the approaches that deal with
multiple instances of trees in the data we wish to visu-
alise, and these can be divided into visualisations that are
shown as a single tree or show multiple trees. The former
case tends to be visualisations built for hierarchical facet
exploration, such as MoireTrees51 and Facet Folders,52

that try and give a fluid single tree view over a multi-
hierarchical structure for ease of navigation. The latter case
is that of visualisations that display multiple representa-
tions of multiple trees. Here there may not be a universal
coverage of leaves by each hierarchy – some may have

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 5



Graham and Kennedy

Table 1: Number of trees compared with number of inidividual representations

more leaves than others and in the case of polyarchy struc-
tures the notion of what leaves are may change between
hierarchies.

This difference between single and multiple tree repre-
sentations for multiple tree models is not as clear-cut as
a simple dichotomy would suggest, especially in the case
of visualisation interfaces for faceted hierarchy explo-
ration. Although for some instances it is fairly clear
how many tree representations are being shown, for
instance the Mambo music browser53 only displays one

hierarchical facet at a time, and others such as FacetMap,54

FacetLens55 and Yee et al’s image browsing system56

simultaneously display at least parts of a hierarchy per
facet type, yet others such as MoireTrees and Facet Folders
merge portions of multiple hierarchical facets into one
hierarchy representation. The essential difference is that
while the same multiple hierarchy models can operate
behind all these various interfaces, the latter have delib-
erately chosen to project this model onto a single hierar-
chical view (Table 1).

6 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

a b c d e

Figure 4: Methods of comparing nodes in two trees – (a) edge drawing, (b) colouring, (c) animation, (d) matrix
representation and (e) agglomeration – shown using indented list representations as the basis for individual trees.

Two trees

The first stage in visualising multiple trees is to visualise
two trees, approaches to which can be seen in Figure 4
and can be categorised as:

(a) Linking two spatially separate tree representations.
(b) Shared colouring between two spatially separate tree

representations.
(c) Animation between trees (temporally separate).
(d) Matrix comparison of two trees.
(e) Spatial agglomeration of two tree structures.

Edge drawing
The first and most widespread technique in the literature
is to display both trees as separate structures with lines
drawn between them to indicate relationships between
nodes they connect27,59–62 (as in Figure 4(a)). This allows
exact and individual relationships to be traced between
different trees. The drawback with this approach is if
there are many lines displayed at once, then individual
edges become impossible to distinguish from the mass
of drawn lines, a common problem in the perception of
graph drawings as recognised by Purchase,63 of which
this is the specialised case of drawing bipartite graphs,64

plus the added constraint that both parts of such a graph
are grouped into tree structures. In response to this,
Robertson et al65 describe a collection of methods to
alleviate traceability difficulties, Holten and van Wijk66

use a bundling technique to visually group related
links drawn between two hierarchies and Buchin et al67

explore formal algorithms for reducing the number of
edge crossings between two binary trees. Further, many
such visualisations such as Craig and Kennedy61 only
show selected subsets of links between trees to reduce the
tangled appearance of a fully populated display.

Colouring
A closely related technique is to show matching nodes
between trees through the use of shared colouring as in
Figure 4(b), used by Parr et al’s DoubleTree system68 and

TreeJuxtaposer,58 Zoomology69 and EVAT70 applications
developed for the InfoVis 2003 contest71 among others.
This technique gives a more general overview of the
amount of overlap between trees. In essence, a coloured
node is signalling that it has a match somewhere in the
other tree, whereas a drawn link signals exactly which
node it matches in the opposite tree. Further interaction,
such as individual node brushing, is necessary to then
locate exact matches of nodes between trees. The vast
majority of the numerous commercial or freeware appli-
cations for comparing file directories and XML files such
as Microsoft’s WinDiff72 use colouring with a linearly
indented list representation as it is the simplest effect
to implement with standard GUI toolkits. Some merge
the approach with edge drawing, such as Kompare73 and
Altova’s DiffDog74 that use both lines and colouring to
indicate similarities between two structures.

A further difference between the colouring and edge
drawing approaches is that the edge drawing approaches
tend to display their trees in representation styles such as
a horizontal node-link layout,75 a horizontal space-filling
adjacency layout61,76 or indented lists62 that have a non-
radial orientation. This enables edges to be drawn, such
that, while they may unavoidably cross each other, they
do not cross any of the nodes in the trees. The shared
colouring approaches do not have to contend with this
issue and can therefore use a more varied array of repre-
sentations, including nested layouts such as Treemaps20

and hyperbolic trees.77

Animation
Animation such as found in Robertson et al23 is used to
display change between representations of different trees,
in effect distinguishing the trees temporally rather than
spatially. Animation is also used for showing changes
in values associated with tree nodes as in Ghoniem and
Fekete78 or the small-scale addition and deletion of nodes
seen in Wittenburg and Sigman.79 In practice, anima-
tion is best used either for showing gradual transitions
that represent evolving change in the structure of a tree,
or in showing switches between hierarchies, in which
where only a few nodes stay constant, rather than radical

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 7



Graham and Kennedy

reorganisation where a user can easily lose track of the
overall change. In both cases animation is effective when
only a few nodes are either moved or preserved with
consideration to the entire node set.

Matrix
The fourth method for visually comparing two trees is to
arrange the trees along the horizontal and vertical axes
of a matrix as shown in Figure 4(d), with the matrix now
showing relationships or shared leaves between the two
trees – this differs from a single tree matrix representa-
tion that has the same tree arrayed along both axes. A
choice can be made as to whether only leaf nodes are
involved in the comparison, in which case an adjacency
style or node-link representation along the axes is used,
or whether direct internal node comparisons are also to
be made in which case using the indented list represen-
tation of a tree along the axes gives space for appropriate
columns and rows as in Figure 4(d). This choice as previ-
ously stated boils down to data semantics – whether an
internal node is simply the sum of its leaf nodes or has
unique properties in itself.

This method removes the problem of interpreting
impenetrable masses of drawn edges, but suffers from
the same under-utilisation of screen space as a single tree
in the same style. This is especially true if the mapping
between tree nodes is strictly one-to-one – in which case
the number of unused entries in the matrix is propor-
tional to the square of the number of utilised spaces – thus
the effect is exacerbated with larger trees. As such, it tends
to be used by techniques wanting to show one-to-many
relationships between nodes in related trees. The most
common occurrence of this representation is in bioinfor-
matics, in which it is known as a cluster heatmap,80 a
particular use being to plot the distribution of microarray
data sets as seen in Eisen’s TreeView software.81 Further,
if we stretch our definition of two trees to include two
subtrees of the same larger tree, then into this category
fall source code and general graph analysers such as van
Ham’s call matrix visualisation.82 Here, as with other
general clustered graph visualisations, the hierarchies
are used as aids to access a general graph structure that
resides at the bottom level of the trees, rather than being
the focus of queries themselves.

Agglomeration
This final approach fuses together two tree structures
into one structural visual representation. Furnas and
Zacks’ Multitrees19 allows two tree structures to be fused
together in one node-link representation, in this instance
the context is that of a family tree, with one tree showing
ancestors and the other descendants. Using their own
definition of Multitrees, it follows that the structures
between these trees are always shared exactly, so a node
in one tree always has the same set of edges in the
other.

For more involved structures where parentage of nodes
may change between trees, Tu and Shen83 propose a
structure known as a union tree in which nodes that
have different parents between the two trees are cloned
to appear under both parents simultaneously in a merged
structure. This removes cycles from the merged structure,
retaining a strict tree structure for subsequent visualisa-
tion while preserving the edge sets found in both compo-
nent trees. This is a common technique when dealing
with DAG structures that are to be visualised using tree
layouts – spanning trees can perform the same function
but by removing edges rather than cloning nodes. Tu
and Shen then visualise the union tree with a TreeMap
layout and use shading effects within the node repre-
sentations to indicate changes in node attributes and
presence between the two trees.

Hong et al’s Zoomology browser69 features a similar
technique to visualise two trees in one merged adjacency
representation. The representation is visualised from the
perspective of one of the two trees, with areas marked in
white indicating nodes ‘missing’ from the current tree but
present in the other, and, for the reverse condition, white
borders used to mark nodes occurring only in the current
tree. Lee et al84 also merge two similar trees into one struc-
ture and display the result as a node-link visualisation.
They then use colour and transparency cues to indicate
the calculated degree or certainty of structural overlap
between the two hierarchies. Isenberg and Carpendale85

combine elements of multiform view techniques with
aspects of agglomeration on a table-top display, letting
users interact with and compare a pair of trees through
direct visual overlay (that is, no computational analysis
on the merged structure is performed), and allowing two
different representation styles to be used – selection of
which is based on user preference for the task at hand.

Summary
Thus we can see that even for two trees there is a range of
possible representation styles that can be utilised to show
those trees’ inter-relationships. Figure 5 shows a sampling
of screenshots for systems that use each of these represen-
tation styles, showing the variety of visual forms that the
representations of a pair of trees can take. Some lend them-
selves better to certain structures – the edge drawing and
matrix representations can easily show related tree struc-
tures that have one-to-many relationships beyond simple
node overlapping, while such relationships would remain
ambiguous with the colour-coding approach. Similarly
for overlapping MultiTree structures the agglomeration
approach means simply redrawing structure on top of
existing displayed structure.

If set relations rather than individual node matching
between trees are of more importance then the colouring
approach lends itself well to displaying such data. Of the
six published entries for the InfoVis 2003 contest71 for
pairwise comparison of trees, all used a colouring-based
linking and brushing approach for at least part of their

8 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

Figure 5: Screenshots of visualisations that show comparisons of two trees. Linking – Craig and Kennedy's61 Concept
Relationship Editor, Colouring – DiffDaff86 file utility comparing two XML files, Animation – Ghoniem and Fekete's78 animated
treemaps, Matrix – van Ham's code matrix,82 Agglomeration – Tu and Shen's Union Tree.83

solution (entries could include multiple visualisations).
Animation between trees was not used in any of the
approaches, the technique being reserved for illuminating

focus+context transitions internal to trees. Agglomera-
tion was used in an overview panel presented in Hong
et al’s Zoomology browser.69

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 9



Graham and Kennedy

Multiple trees

Multiple tree (>2) visualisations for the most part extend
the two-tree approach to a larger collection of tree struc-
tures. Here the pressure builds on available screen space
and decisions are needed about whether to show relation-
ships from just one tree to the other trees or to show
all relationships between the entire set of trees. Further-
more, other options such as 3D representations for navi-
gating collections of trees may be considered, and when
the number of trees becomes too large to display usefully,
scatterplot-like representations of tree distances emerge,
with trees reduced to individual points

Edge drawing
This approach, when extended to more than two
instances, involves the display of multiple individual
representations on-screen, a technique termed as small
multiples by Tufte.29 Available screen space is sub-divided
into areas in which the individual trees are drawn –
an extension of the technique for two trees seen in
Figures 4(a) and (b). Then, to draw edges between these
multiple tree representations is probably best described
as what Parallel Coordinates87 would resemble if the axes
were hierarchical in nature, especially as these visualisa-
tions generally do not attempt to draw a many-to-many
mapping between all the trees but either a one-to-many
mapping or a sequential mapping as seen in Parallel Coor-
dinates. The reasons for not showing a many-to-many
mapping in this representation style are that it would
firstly produce so many edges intersecting each other and
the trees themselves as to be unreadable; secondly, many
data sets are specifically visualised in this manner because
they have a temporal ordering such that comparison of a
particular tree is usually only meaningful to the directly
preceding or succeeding trees.

We are not aware of any current general-purpose
Parallel Coordinates systems that use hierarchical axes;
perhaps the nearest example in appearance is Wernert
et al’s Tree3D88 system, based on previous work by Stewart
et al89 into visualising multiple phylogenetic trees. This
approach lines up multiple phylogenies in a parallel
formation and then traces lines between matching nodes
in immediately neighbouring phylogenies. Dwyer and
Schreiber’s90 later phylogenies visualisation can also be
viewed in this style, and includes edge crossing minimi-
sation algorithms to improve readability.

Similarly, Telea and Auber’s visualisation of source code
evolution91 uses small multiple representations of code
package structures and edges between these represen-
tations to indicate the introduction and movement of
source code tree changes. Colour is also utilised to pick
out particular package grouping or subsets of interest.

Also, Tominski et al92 developed a radial-based layout,
VisAxes, for multi-dimensional information. Here, as in
Parallel Coordinates, dimensions map one-to-one to a set
of axes; a dimension/axis of particular interest is placed

at the centre of the display around which the other axes
are arranged. Similarly to Parallel Coordinates, objects are
then visualised as poly-lines that plot between the axes set
at the appropriate intersections for each axis – though here
each poly-line starbursts from the central axis to the others
rather than the sequential intersecting that the Parallel
Coordinates layout provides. This technique is mentioned
because they discuss the possibility of hierarchical axes,
and if enough such axes were used, their approach would
come under the umbrella of multiple tree visualisations
that use edge drawing to show correlations.

Colouring
It is noticeable that once more than two trees arrive on the
scene the dominant approach for showing relationships
between individual trees in small multiples is through
colour or another highlighting technique. In fact, the
majority of the examples referenced in the previous edge
drawing section also use colouring in tandem with edge
drawing to mark particular subsets. The reasons for this
are two-fold.

Firstly, there is the previously described problem of edge
crossings and the resulting lack of readability, though alle-
viated to an extent through edge crossing minimization
algorithms. Secondly, edges themselves require space to
draw and to visually reroute themselves between trees, but
with space at a premium with multiple representations
to draw there is pressure to use the more space-efficient
tree representations as seen in Figures 3(b)–(d) and to use
what space there is for tree structure. Examples that use
colouring to show correlations include Munzner et al’s
TreeJuxtaposer,58 which can draw multiple linked trees
based on dendrograms – a node-link style of layout used
for phylogenies. However, internal nodes are not labelled
and the allocation for individual nodes can become so
compressed that the drawn intra-tree edges may use all the
space available for drawing, hence moving towards the
adjacency style of representation. Graham and Kennedy25

use multiple adjacency-layout representations, as do Chi
et al93 and Spenke and Beilken,94 while both Wittenberg
et al20 and Kutz95 use multiple nested layouts to repre-
sent their trees. Morse et al96 use multiple indented lists
to compare and contrast multiple taxonomic trees. Daida
et al97 uses small multiples of individual radial node-link
representations to visualise processes in genetic program-
ming, but does not allow direct interaction with the nodes
in a tree.

However, even with more efficient single tree visuali-
sations, the ‘small multiple’ approach does not scale well
because of each tree receiving a correspondingly smaller
area of screen space as the size of the set grows. There
has been research on displaying larger data sets via small
multiple representations, but this focuses on larger and
larger individual trees98 rather than a greater number of
trees – so far the largest number of trees displayed with
this method is approximately 50, for a set of binary trees
as seen in Chevenet et al’s TreeDyn system,99 or 14 if we

10 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

impose the condition that the tree elements are interac-
tive as in Graham et al.100

Animation
Animation has further drawbacks when applied to
multiple trees rather than just a pair of trees. Here, the
number and complexity of trees that can be animated
through is not constrained by screen space but by human
perceptual abilities; animation can only show at any
given moment a change between two trees, tracking a
change between multiple trees relies on a user being able
to remember the animation’s past states. Card et al’s Time-
Tree visualisation101 combines a tree visualisation with
temporal data, where changes in a tree structure between
different time points are reconciled through animation.
Herman et al’s102 Latour tree drawing system also displays
multiple trees through animation, and describes the input
data as one initial tree plus a group of ‘difference trees’
that detail sets of incremental changes to the initial tree
structure. This would seem to implicitly recognise that
animation is best suited to showing structural evolution
rather than complete reorganisations.

Wettel and Lanza103 use a ‘flick-book’-style visualisa-
tion by simply switching between a view of one tree to
another – however, they preserve the positioning of nodes
between views by allocating layout space according to a
union of the tree set. Thus a space is allocated in each indi-
vidual tree view for every node that ever exists throughout
the whole set of trees. If a particular tree does not include
a node at a particular position then the space is left blank
in the associated view.

Matrix
Matrix based visualisation of multiple trees is compli-
cated by the fact that a matrix has only two axes to which
an individual tree can be mapped. Multiple trees could
be accommodated by extending the multiple scatterplot
technique seen in Becker and Cleveland104 – a visualisa-
tion device that allows N-dimensional data to be rendered
as an N × N matrix of scatterplots, showing every pair-
wise combination of variables – to use trees as the basis
of comparison rather than dimensions. This would in
effect form a matrix of matrices, each of which shows
the correlation of two trees against each other, though
we are unaware of any current visualisations that do this.
In this manner a matrix representation for multiple trees
becomes a small multiple display itself, except that each
individual representation shows the mapping between
two trees rather than just one tree in isolation.

Conversely, the union tree (as defined by Tu and
Shen83) could be used as a hieraxis for both axes of one
matrix, and edges plotted for multiple trees within this
single matrix. However, trees that differed significantly
in their structures and node overlap would also produce
larger and larger union trees and thus correspondingly
larger matrices. Further, techniques would then be needed
to display and differentiate multi-edges that occupied the

same point in the matrix. Abello and van Ham’s Matrix-
Zoom system105 can display matrices containing multi-
edges but, rather than distinguish them individually, use
colour saturation to indicate the number of edges occu-
pying a particular point in the matrix. The multi-edges in
their system are formed by viewing a graph at multiple,
hierarchical levels of detail and aggregating edges at each
level.

One interesting take on the approach is touched on
in Wong et al’s106 work, in which sketching operations
on a matrix representation are used to generate graphs.
Their discussion includes an example of how to generate
multiple trees through drawing the appropriate matrix
representation, though the resulting structure is shown
through a traditional node-link graph representation. One
limitation is that the same relationship cannot be repli-
cated across trees as their application does not allow the
creation of multi-edges.

Agglomeration
Agglomeration of multiple trees means in practice that a
node can have multiple parents to display in the same
representation, possibly a different parent node per tree.
Again the options can include replicating nodes with
more than one parent link across the trees to keep the
structure as tree-like as possible and amenable to stan-
dard tree-drawing techniques. If, though, we wish to
represent the multiple tree structure as the truer cycle-
containing graph structure, which nested, indented and
adjacency layouts cannot display, then agglomerative
representations of multiple trees are generally displayed
using node-link representations, such as in Florentz and
Muecke’s GLAD system.107 Some do try a different tack
though, Mank’s CristalView108 uses force-directed place-
ment of overlapping TreeMaps to communicate shared
nodes across multiple hierarchies. Burch and Diehl109

also break the node-link domination to a degree by
displaying a TreeMap of a reference taxonomy on top of
which are overlaid multiple node-link trees. The nodes
in each individual tree are instances of object classes in
the reference taxonomy and are thus placed on top of
the TreeMap at corresponding positions, with the edges
between contorting to connect the appropriate points.

Care must be taken when displaying multiple tree struc-
tures using general node-link graph drawing techniques;
to begin with multi-edges resulting from consistent edges
across different trees need to be distinguished by some
method, but most general graph-drawing toolkits do
not provide support for this. A general graph layout
method also usually results in no global orientation for
child–parent links even if one exists in the overall struc-
ture. Techniques specifically developed for drawing DAGs
can re-impose a global orientation for parent–child links,
although the restrictions on node placement involves
a trade-off on edge crossings as seen in Graham and
Kennedy,57 D’Ambros and Lanza110 and Melançon and
Herman.111 The main advantage with agglomeration

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 11



Graham and Kennedy

displays is that screen space is effectively re-used across
tree representations. There is no technical upper limit to
how many trees can be displayed through agglomeration,
though eventually known perceptual obstacles found in
graph drawing caused by edge-crossing and occlusion of
nodes and edges will lead to difficulty in interpreting the
structure usefully.

3D representations
A popular compromise that fuses elements of the previous
approaches is to use a 3D representation of multiple trees.
These generally take the form of multiple, distinct tree
representations drawn in parallel planes to each other.
Relationships between the trees are shown again either by
drawing edges between trees as in Dadzie and Burger,26

Dwyer and Schreiber90 and Wernert et al,88 or by using
colouring as in Chi et al.93 The 3D approach means the
group of trees can be rotated so that they resemble a small
multiple display of multiple trees (one tree per section of
screen space), or turned ninety degrees so the trees give
the impression of overlaying one another. This feature
does have the drawback of not guaranteeing that equiva-
lent nodes in different trees will overlay each other, and
can lead to a display with a high degree of occlusion.
Reiss’ early work on software visualisation112 used 3D to
show a merged structure of three different hierarchies,
in which looking at any of the xy/xz/yz planes head-on
would reveal one individual hierarchy.

Atomic representations
Finally, when the number of trees grows extremely large,
the finite screen space cannot show all the trees at any
sensible level of detail, so techniques have been devel-
oped that visualise the trees as atomic items, from which
examples can be viewed in detail. Amenta and Klingner113

and Hillis et al114 take this approach by visualising a set
of phylogenies in a scatterplot, where distances between
points relate to the degree of similarity between the asso-
ciated trees. Meyer115 proposes a similar scheme, whereby
the trees form nodes in a hierarchical graph, connected
by edges according to their similarity. Parts of the graph
and, from there, individual trees or a consensus tree of
a tree group can then be interrogated to display further
details and to reveal related phylogenies. Both these appli-
cations state that consensus trees lose data from the indi-
vidual trees that compose them, and so the ability to see
the individual phylogenies is crucial.

Summary
Again, as with the two-tree scenario, the type of overall
structure the multiple trees form will have a strong bearing
on the visualisation techniques that will be required to
effectively visualise the data. An unrelated forest of trees
will obviously be easily, and perhaps only, represented as
separate visual entities, while visually overlaying trees –
an agglomeration layout – might benefit those that share

many multitree-like sub-structures between themselves.
Trees that construct their own structure over shared nodes,
forming polyarchies or DAGs, are more problematic as the
differing tree structures produce significant extra edge-
crossings in the agglomeration style views. Finally, trees
that are related through non-overlapping node relation-
ships will favour a representation that does not empha-
sise node-sharing but instead has the ability to show
one-to-many relationships between trees. This will favour
the edge drawing and matrix representations over the
agglomeration based techniques. Figure 6 gives a selec-
tion of visualisations for the various multiple tree visual-
isations, with the omission of the as-yet unimplemented
matrix representation.

Table 2 describes a matrix of representations by possible
features to highlight the strengths of each representation,
including the ability to show node mappings between
trees, and the ability to show types of structural changes
– specifically the addition, deletion and reorganising of
nodes between trees. For instance, finding one-to-many
relationships is easier in the edge drawing representation
than in the colouring metaphor, while showing new and
deleted nodes is easier in the colouring approach than
with the edge-drawing representations. Those categories
where capabilities for a task in a given representation have
been proven are shaded. The 3D category is omitted as
much of what 3D visualisations are capable of depends
on the individual representations used for the trees. Situ-
ations are also marked where there are, to our knowledge,
no current representations – such as many in the matrix
category.

In summary, representations for multiple trees are
based on the representations described for two trees,
but the drawbacks and advantages of each become more
exaggerated as more trees are considered, until atomic
representations of trees become the only viable option
and more detailed views are only considered upon
reducing the tree set size or zooming in on a partic-
ular tree instance. Matrix representations appear to be
under-exploited even though they are gathering more
attention for general graph display due to their removal
of edge-crossing difficulties found in general node-link
representations. For multiple tree structures that include
cycles that hamper the application of certain represen-
tations or feature relations that induce edge-crossings in
node-link diagrams, perhaps this is one potential avenue
of future exploration. To balance against this, matrices
have well-known drawbacks in path navigation that are
also their main weakness in general graph drawing and
will require mechanisms for dealing with multi-edges
that occur frequently in multiple tree sets.

Tasks

The literature reveals three main high-level tasks
that multiple tree visualisations attempt to tackle in
order to allow users to use, create and understand

12 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

Figure 6: Screenshots of systems representing the different representation styles for multiple trees. Edge drawing – Telea
and Auber's91 CodeFlow application, Colouring – Munzner et al's TreeJuxtaposer,58 Animation – Wettel and Lanza's103

CodeCity representation, 3D – Dadzie and Berger's26 mouse anatomy ontology viewer, Agglomeration – Graham and
Kennedy's57 DAG viewer and Atomic – Hillis et al's TreeSet visualization114 (screenshot from the TreeSet module running
under the Mesquite software system116).

multi-hierarchical data.

1. Filtering of data through multiple hierarchical cate-
gories – faceted hierarchy browsing or data-cube
querying.

2. Mapping of relationships between multiple hierarchies
– such as allowing users to edit machine-produced
mappings between ontologies or taxonomic data.

3. Exploration of differences between multiple hierar-
chies, structurally or in terms of node properties.

Many of the visualisations that fall under the umbrella
of data filtering do not wish to compare multiple
hierarchies, but instead aim to offer a straightforward way
of navigating through the structure formed by multiple
hierarchies to reach the data sitting at the leaves. As

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 13



Graham and Kennedy

Table 2: Strengths and weaknesses for representation of multiple trees

such they tend not to offer complex or multiple views of
the data set, but a current view of where navigation has
led to and indications of where immediate navigation
forward or backward could lead to. Representations of
this task are either a single hierarchy composed of the
current and possible further filtering categories or a set of
extremely flat hierarchy representations; often only one
or two levels of a hierarchy are displayed even if deeper
sub-categories exist.

The second high-level task, mapping relationships
between multiple hierarchies, is in all cases done on a
pair-wise basis. Apart from Wong et al’s106 matrix-based
sketcher this task is always carried out by representing the
hierarchies in question as two individual representations,
mostly in the indented list style (and never as a nested
representation), between which relationships are shown
by lines or arcs acting as links. This method is preferred
in fields such as ontology alignment and taxonomic
concept mapping as it can show more complex relation-
ships than simple 1:1 relationships between nodes in
different trees – and it is these one-to-many or many-to-
many relationships that tend to need expert intervention
to specify accurately when the simpler relationships have
mostly been resolved algorithmically. Commercial prod-
ucts such as MapForce11 and research prototypes such as
SchemaMapper65 all adhere to this template of represen-
tation and interaction.

The final high-level task, comparing multiple hierar-
chies to find changes in structure or node properties, is
the task that has produced the most varied collection of
representations as researchers strive to project the rich-
ness and complexity of the inter-relationships between
multiple trees, while at the same time attempting to keep

the basic representations intelligible, and can be divided
into a number of different tasks – comparing node
attributes, finding structural reorganisations or locating
node deletion and addition.

Finding differences in node attributes inevitably
involves either a small multiple display or animation
approach as the differences between successive trees need
to be shown in their own area either spatially or tempo-
rally. Out of these, the edge drawing approach is usually
disregarded as attributes are usually encoded using colour
or size as in Treemaps, and edge drawing is almost univer-
sally reserved for showing structure reorganisation.

Finding changes in structure depends on the type and
detail of change we wish to see. The overlap of common
structure can be seen by colouring in small multiples. If
we are interested in finding re-classification of existing
structure, the most prominent style appears to be some
form of agglomeration representation or edge drawing
approach, as divergent edges between trees can quickly
be seen in the display of the merged structure – though
as stated before too many changes can lead to problems
with edge-crossings in node-link displays. Addition and
deletion of nodes can be seen in general in coloured repre-
sentations if a function has been implemented to encode
such nodes with specific colours, such as found in Tree-
Juxtaposer. Edge drawing techniques have difficulty here
as if a node is freshly minted or now removed, there is
nothing to either draw a connecting edge from or to. (The
same problem occurs in parallel coordinates when a null
value occurs for an item in a particular value.)

Unlike for single trees, there are limited user studies
in comparing multiple tree representations, and those
that have occurred have been small in scale. Lee et al85

14 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

compared a node-link agglomerated display of two trees
against Microsoft’s WinDiff.72 tool and found preference
among software engineers for their CandidTree interface.
Graham and Kennedy117 found that taxonomists
preferred a small multiple representation of a tree set
linked by colouring to an agglomerated graph representa-
tion, and still preferred the small multiple approach to a
DAG representation that preserved child-parent orienta-
tion. However, these were both studies for specific fields
and these preferences may be ingrained to a particular
mindset or tasks. Multiple tree research still lacks an
equivalent study to Barlow and Neville’s,118 Kobsa’s41 or
Andrews and Kasanicka’s119 evaluations across a gamut
of single tree visualisation types. Parunak120 argued that
people were best prepared to think of multiple classifi-
cations as individual, intersecting entities rather than a
merged whole, and this might give a hint as to why the
small multiple approaches appear to be the dominant
metaphor in multiple tree visualisation.

Conclusion

This review of current work demonstrates that multiple
tree visualisation is still an open research topic. Even for
single trees, research is still being published on different,
novel ways of displaying and interacting with trees and
hierarchies, with techniques designed to accommodate
certain user groups and tasks. Visualising multiple hierar-
chies adds an extra level of complexity, as representations
of multiple trees cover a wider breadth of display possibili-
ties than representations for single instances or even pairs
of trees. Layouts for general and layered graph drawing
enter into consideration as well as interaction techniques
such as linking and brushing for discovering correlations
between trees.

The complexity of the overall structure varies depending
on the inter-relationships between the individual hierar-
chies, on a spectrum of no overlap whatsoever to DAGs,
onto polyarchies, and then through to structures that
have extra non-trivial relationships between nodes – this
can and does affect the particular choice of layout and
techniques used in a multiple tree visualisation.

Consideration of tasks also narrows the possible range of
representations; human-assisted mapping between trees
is done exclusively on a pair-wise fashion between indi-
vidual tree representations. Navigation of multiple trees
involves displaying as little of the complexity of the struc-
ture as possible and keeping the navigation choices down
to the next one or two immediately accessible levels in
each hierarchy. For more involved tasks, such as discov-
ering differences in structure between trees, increasingly
detailed and varied visualisations have been considered.
In these circumstances, research so far has shown that
developers and users prefer when possible to reduce visual
complexity by keeping the individual tree structures visu-
ally separate, even if the underlying data model is a fusion
of many trees. The layout design space has not been fully

explored by existing visualisations; matrix-style layouts
are noticeable by their absence in the literature.

No conclusive user studies have yet been performed
comparing the various types of possible multiple tree visu-
alisation. Those small studies that have occurred were
based on small user samples, self-assessment as in the
InfoVis 2003 competition, or a particular type of data.

The situation is exacerbated by the fact that as stated
multiple trees can form different classes of structure.
While single tree comparative evaluation can rely on
a tree being a tree, multiple tree evaluation will have
to accommodate numerous types of structures from
multitrees to polyarchies and consider whether systems
under comparison are being compared like with like. It
would, for instance, not make sense to ask a visualisation
designed to show multitrees to handle structures with
more complex relationships and then judge its perfor-
mance against another system based on that capability.
As such, any experiments to show which representation
or systems are best for particular tasks will have to be
doubly careful about choosing a data set.

Acknowledgements

We thank EPSRC for providing the funding (Grant no.
EP/D052629/1) through which this article was produced,
and the expert reviewers for providing essential feedback
on previous drafts of this article. We also thank those
researchers who were kind enough to grant permission to
use screenshots of their visualisations in this article.

References

1 Noik, E.G. (1994) A space of presentation emphasis techniques
for visualizing graphs. In: W.A. Davis and J. Barry (eds.) Graphics
Interface Banff, Alberta, Canada: Morgan-Kaufmann Publishers,
pp. 225–234.

2 Herman, I., Melançon, G. and Marshall, M.S. (2000) Graph
visualisation and navigation in information visualisation: A
survey. IEEE Transactions on Visualization and Computer Graphics
6(1): 24–43.

3 Nguyen, Q.V. (2005). Space efficient visualisation of large
hierarchies. PhD Thesis, Faculty of Information Technology,
University of Technology, Sydney, Australia, pp. 171+xix.

4 Nussbaumer, A. (2005). Hierarchy browsers. Master’s Thesis,
Institute for Information Systems and Computer Media (IICM),
Graz University of Technology, Graz, Austria, p. 109.

5 Graham, M. (2001). Visualising multiple overlapping classifi-
cation hierarchies. PhD Thesis, School of Computing, Napier
University, Edinburgh, UK, p. 182.

6 Steel, M., Dress, A.W.M. and Böcker, S. (2000) Simple but
fundamental limitations on supertree and consensus tree
methods. Systematic Biology 49(2): 363–368.

7 Priss, U. (2008) Facet-like structures in computer science.
Axiomathes 18(2): 243–255.

8 Sifer, M. (2006) Filter co-ordinations for exploring multi-
dimensional data. Journal of Visual Languages and Computing
17(2): 107–125.

9 Shvaiko, P. and Euzenat, J. (2008) Ontology matching [Website],
http://www.ontologymatching.org/index.html, accessed 16
December 2008.

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 15



Graham and Kennedy

10 Aumueller, D., Do, H.-H., Massmann, S. and Rahm, E. (2005)
Schema and ontology matching with COMA++. In: J. Widom,
F. Özcan and R. Chirkova (eds.) ACM SIGMOD Baltimore, MD:
ACM Press, pp. 906–908.

11 Altova. GmbH MapForce (Version 2008 rel. 2 sp. 2)[Computer
Software], http://www.altova.com/downloadtrialmapforce3.
html, accessed 16 December 2008.

12 Wang, G., Rifaieh, R., Goguen, J., Zavesov, V., Rajasekar, M.
and Miller, M. (2007). Towards User Centric Schema Mapping
Platform. International Workshop on Semantic Data and Service
Integration, Vienna, Austria.

13 Eick, S.G., Steffen, J.L. and Sumner Jr, E.E. (1992) Seesoft – A tool
for visualizing line oriented software statistics. IEEE Transactions
on Software Engineering 18(11): 957–968.

14 Gîrba, T., Lanza, M. and Ducasse, S. (2005) Characterizing the
evolution of class hierarchies. 9th European Conference on
Software Maintenance and Reengineering – CSMR, Manchester,
UK. Los Alamitos: IEEE Computer Society Press, pp. 2–11.

15 Wu, X., Storey, M.-A., Murray, A. and Lintern, R. (2003)
Visualization to support version control software: Suggested
requirements. In: A.v. Deursen, C. Knight, J.I. Maletic and M.-A.
Storey (eds.) VisSoft. Amsterdam, Netherlands, pp. 80–86.

16 Fuchsberger, C., Falchi, M., Forer, L. and Pramstaller, P.P. (2008)
PedVizApi: A Java API for the interactive, visual analysis of
extended pedigrees. Bioinformatics 24(2): 279–281.

17 Storey, M.-A., et al (2001) Jambalaya: Interactive Visualization
to Enhance Ontology Authoring and Knowledge Acquisition in
Protégé. Workshop on Interactive Tools for Knowledge Capture
(K-CAP), Victoria, British Columbia, Canada.

18 McGuffin, M. and Schraefel, M.C. (2004) A comparison of
hyperstructures: Zzstructures, mSpaces, and Polyarchies. In:
J. Whitehead and D. De Roure (eds.) ACM Hypertext. Santa Cruz,
CA: ACM Press, pp. 153–162.

19 Furnas, G.W. and Zacks, J. (1994) Multitrees: Enriching and
reusing hierarchical structure. In: B. Adelson, S. Dumais and
J. Olson (eds.) ACM CHI. Boston, MA: ACM Press, pp. 330–336.

20 Wittenburg, K., Das, D., Hill, W. and Stead, L. (1995) Group
asynchronous browsing on the world wide web. In: C. Irving
(ed.) Fourth International World Wide Web Conference 1995.
Boston, MA: O’Reilly, pp. 51–62.

21 Sifer, M. (2003) Exploring web site log data with a
multi-classification interface. In: E. Banissi, F. Khosrowshahi,
M. Sarfraz and A. Ursyn (eds.) IEEE Conference on Information
Visualisation. Los Alamitos, London, UK: IEEE Computer Society
Press, pp. 94–101.

22 McGuffin, M. and Balakrishnan, R. (2005) Interactive
visualization of genealogical graphs. In: J. Stasko and M.O. Ward
(eds.) IEEE InfoVis. Minneapolis, MN: IEEE Computer Society
Press, pp. 17–24.

23 Robertson, G., Cameron, K., Czerwinski, M. and Robbins, D.
(2002) Animated visualization of multiple intersecting
hierarchies. Information Visualization 1(1): 50–65.

24 Conklin, N., Prabhakar, S. and North, C. (2002) Multiple foci
drill-down through tuple and attribute polyarchies in tabular
data. In: P.C. Wong and K. Andrews (eds.) IEEE InfoVis. Boston,
MA: IEEE Computer Society Press, pp. 131–134.

25 Graham, M. and Kennedy, J. (2005) Extending taxonomic
visualisation to incorporate synonymy and structural markers.
Information Visualization 4(3): 206–223.

26 Dadzie, A.-S. and Burger, A. (2005) Providing visualisation
support for the analysis of anatomy ontology data. BMC
Bioinformatics 6(74) n/a.

27 Cruz, I.F., Sunna, W., Makar, N. and Bathala, S. (2007) A visual
tool for ontology alignment to enable geospatial interoperability.
Journal of Visual Languages and Computing 18(3): 230–254.

28 Tu, Q. and Godfrey, M.W. (2002) An Integrated Approach for
Studying Architectural Evolution. Paris, France: IEEE Computer
Society Press, 10th International Workshop on Program
Comprehension (IWPC), pp. 127–136.

29 Tufte, E.R. (1983) The Visual Display of Quantitative Information.
Cheshire, CO: Graphics Press, p. 197.

30 Reingold, E.M. and Tilford, J.S. (1981) Tidier drawing of trees.
IEEE Transactions on Software Engineering 7(2): 223–228.

31 Beebe, N.H.F. (2006) A bibliography of tree drawing algorithms.
Bibliography, Department of Mathematics, University of Utah,
Salt Lake City, pp. 22, http://www.math.utah.edu/pub/tex/
bib/trees.ps.gz.

32 Moen, S. (1990) Drawing dynamic trees. IEEE Software 7(4):
21–28.

33 Johnson, B. and Shneiderman, B. (1991) Treemaps: A space-
filling approach to the visualization of hierarchical information
structures. In: G.M. Nielson and L.J. Rosenblum (eds.) IEEE
Visualization. San Diego, CA: IEEE Computer Society Press,
pp. 284–291.

34 Wang, W., Wang, H., Dai, G. and Wang, H. (2006) Visualization
of large hierarchical data by circle packing. In: R.E. Grinter,
T. Rodden, P.M. Aoki, E. Cutrell, R. Jeffries and G.M. Olson (eds.)
ACM CHI Montréal, Québec, Canada: ACM Press, pp. 517–520.

35 Kruskal, J.B. and Landwehr, J.M. (1983) Icicle plots: better
displays for hierarchical clustering. The American Statistician
37(2): 162–168.

36 Stasko, J., Catrambone, R., Guzdial, M. and McDonald, K. (2000)
An evaluation of space-filling information visualizations for
depicting hierarchical structures. International Journal of Human-
Computer Studies 53(5): 663–694.

37 Robertson, G.G., Mackinlay, J.D. and Card, S.K. (1991) Cone
trees: Animated 3D visualizations of hierarchical information.
ACM CHI: Human Factors in Computing Systems. New Orleans,
LA: ACM Press, pp. 189–194.

38 Bladh, T., Carr, D.A. and Scholl, J. (2004) Extending tree-
maps to three dimensions: A comparative study. 6th Asia-Pacific
Conference on Computer-Human Interaction, Rotorua, New Zealand.
Berlin, Heidelberg: Springer-Verlag, pp. 50–59.

39 van Ham, F. and van Wijk, J.J. (2002) Beamtrees: Compact
visualization of large hierarchies. In: P.C. Wong and K. Andrews
(eds.) IEEE InfoVis. Boston, MA: IEEE Computer Society Press,
pp. 93–100.

40 Cockburn, A. and McKenzie, B. (2000) An evaluation of cone
trees. In: S. McDonald, Y. Waern and G. Cockton (eds.) BCS HCI.
Sunderland, London, UK: Springer-Verlag, pp. 425–436.

41 Kobsa, A. (2004) User experiments with tree visualization
systems. In: M.O. Ward and T. Munzner (eds.) IEEE InfoVis.
Austin, TX: IEEE Computer Society Press, pp. 9–16.

42 Shen, Z. and Ma, K.-L. (2007) Path visualization for adjacency
matrices. In: K. Museth, T. Möller and A. Ynnerman
(eds.) Eurographics/IEEE-VGTC Symposium on Visualization.
Norrköping, Sweden. Aire-la-Ville, Switzerland: Eurographics,
pp. 83–90.

43 Lü, H. and Fogarty, J. (2008) Cascaded Treemaps: Examining the
visibility and stability of structure in treemaps. Graphics Interface.
Windsor, Ontario, Canada: Canadian Information Processing
Society, 322, pp. 259–266.

44 Zhao, S., McGuffin, M.J. and Chignell, M.H. (2005) Elastic
hierarchies: Combining treemaps and node-link diagrams. IEEE
InfoVis. Minneapolis, MN: IEEE Computer Society Press, pp.
57–64.

45 Nguyen, Q.V. and Huang, M.L. (2005) EncCon: An approach to
constructing interactive visualization of large hierarchical data.
Information Visualization 4(1): 1–21.

46 Wilson, R.M. and Bergeron, R.D. (1999) Dynamic hierarchy
specification and visualization. IEEE InfoVis. San Francisco, CA:
IEEE Computer Society Press, pp. 65–72.

47 Urbanek, S. (2002) Different ways to see a tree – KLIMT. In: W.
Härdle and B. Rönz (eds.) 15th Conference on Computational
Statistics, COMPSTAT. Berlin, Germany, Heidelberg: Physica-
Verlag, pp. 303–308.

48 Schedl, M., Knees, P., Widmer, G., Seyerlehner, K. and
Pohle, T. (2007) Browsing the web using stacked three-
dimensional sunbursts to visualize term co-occurrences and
multimedia content. In: G. Kindlmann and L. Linsen (eds.)
IEEE Visualization. Sacramento, CA: Poster Compendium, IEEE
Computer Society Press, pp. 2–3.

49 Teoh, S.T. (2007) A study on multiple views for tree visualization.
In: R.F. Erbacher, J.C. Roberts, M.T. Gröhn and K. Börner (eds.)
Visualization and Data Analysis. Bellingham, San Jose, CA: SPIE
Press, 6495, pp. 99–110.

16 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18



Survey of multiple tree visualisation

50 Kules, B., Shneiderman, B. and Plaisant, C. (2003) Data
exploration with paired hierarchical visualizations: Initial
designs of pairtrees. National Conf. on Digital Government
Research, Boston, MA, 130 – ACM International Conference
Proceeding Series, Digital Government Research Center.

51 Mohammadi-Aragh, M.J. and Jankun-Kelly, T.J. (2005)
MoireTrees: Visualization and interaction for multi-hierarchical
data. Eurographics/IEEE VGTC Symposium on Visualization.
Leeds, UK: Eurographics, pp. 231–238.

52 Weiland, M. and Dachselt, R. (2008) Facet folders: Flexible filter
hierarchies with faceted metadata. ACM CHI. Florence, Italy:
ACM Press, pp. 3735–3740.

53 Dachselt, R. and Frisch, M. (2007) Mambo: A facet-based
zoomable music browser. In: T. Ojala and M. Ylianttila (eds.) 6th
international conference on Mobile and Ubiquitous Multimedia.
Oulu, Finland. New York: ACM Press, pp. 110–117.

54 Smith, G., Czerwinski, M., Meyers, B., Robbins, D., Robertson, G.
and Tan, D.S. (2006) FacetMap: A scalable search and browse
visualization. IEEE Transactions on Visualization and Computer
Graphics 12(5): 797–804.

55 Lee, B., Smith, G., Robertson, G.G., Czerwinski, M. and
Tan, D. S. (2009) FacetLens: Exposing trends and relationships to
support sensemaking within faceted datasets. ACM CHI. Boston,
MA: ACM Press, pp. 1293–1302.

56 Yee, K.-P., Swearingen, K., Li, K. and Hearst, M. (2003) Faceted
metadata for image search and browsing. ACM CHI. Fort
Lauderdale, FL: ACM Press, pp. 401–408.

57 Graham, M. and Kennedy, J. (2007) Exploring multiple trees
through DAG representations. IEEE Transactions on Visualization
and Computer Graphics 13(6): 1294–1301.

58 Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L. and
Zhou, Y. (2003) TreeJuxtaposer: Scalable tree comparison using
focus+context with guaranteed visibility. ACM Transactions on
Graphics 22(3): 453–462.

59 Sheth, N., Börner, K., Baumgartner, J., Mane, K. and Wernert, E.
(2003) Treemap radial tree and 3D tree visualizations. IEEE
InfoVis Poster Compendium. Seattle, Washington: IEEE Computer
Society Press, pp. 128–129.

60 Wan Zainon, W.N. and Calder, P. (2006) Visualising phylogenetic
trees. Seventh Australasian User Interface Conference, Hobart,
Australia: Australian Computer Society, 50, pp. 145–152.

61 Craig, P. and Kennedy, J. (2008) Concept relationship editor:
A visual interface to support the assertion of synonymy
relationships between taxonomic classifications. In: K. Börner,
M.T. Gröhn, J. Park and J.C. Roberts (eds.) Visualization and Data
Analysis. San Jose, CA: SPIE Press, 6809, p. 12.

62 Chiticariu, L., Hernández, M.A., Kolaitis, P.G. and Popa, L. (2007)
Semi-automatic schema integration in clio. VLDB. Austria,
Vienna: ACM Press, pp. 1326–1329.

63 Purchase, H. (1997) Which aesthetic has the greatest effect
on human understanding? G. Di Battista, (ed.) Graph Drawing.
Rome, Italy, LNCS 1353. Berlin, Heidelberg, Springer-Verlag,
pp. 248–261.

64 Eades, P. and Wormald, N.C. (1994) Edge crossings in drawings
of bipartite graphs. Algorithmica 11(4): 379–403.

65 Robertson, G. G., Czerwinski, M. P. and Churchill, J. E. (2005)
Visualization of mappings between schemas. In: G.C. van der
Veer and C. Gale (eds.) ACM CHI. Portland, OR: ACM Press, pp.
431–439.

66 Holten, D. and van Wijk, J.J. (2008) Visual comparison of
hierarchically organized data. Computer Graphics Forum 27(3):
759–766.

67 Buchin, K., et al (2008) Drawing (Complete) binary tanglegrams:
Hardness, approximation, fixed-parameter tractability. In: I.G.
Tollis and M. Patrignani (eds.) Graph Drawing. Heraklion, Crete,
Greece, LNCS 5417. Berlin, Heidelberg: Springer-Verlag, pp.
324–335.

68 Parr, C.S., Lee, B., Campbell, D. and Bederson, B.B.
(2004) Visualizations for taxonomic and phylogenetic trees.
Bioinformatics 20(17): 2997–3004.

69 Hong, J. Y., D’Andries, J., Richman, M. and Westfall, M.
(2003) Zoomology: Comparing two large hierarchical trees. In:

C. Plaisant and J.-D. Fekete (eds.) IEEE InfoVis Poster Compendium.
Seattle, Washington: IEEE Computer Society Press, pp. 120–121.

70 Auber, D., Delest, M., Domenger, J. P., Ferraro, P. and Strandh,
R. (2003) EVAT: Environment for vizualisation and analysis of
trees. In: C. Plaisant and J.-D. Fekete (eds.) IEEE InfoVis Poster
Compendium. Seattle, Washington: IEEE Computer Society Press,
pp. 124–125.

71 Information Visualization Benchmarks Repository. (2003)
InfoVis 2003 Contest – Visualization and PairWise Comparison
of Trees [Webpage], http://www.cs.umd.edu/hcil/Infovis
Repository/contest-2003/, accessed 20 July 2009.

72 Microsoft Corp. (2008) WinDiff (Version 5.1) [Computer
Software], http://support.microsoft.com/kb/159214, accessed 15
December 2008.

73 Snyder, J., Dobbe, W., Keel, J., Bruggeman, O. and Firebaugh, J.
(2008) Kompare (Version 3.5) [Computer Software], http://www.
kde.org/download/, accessed 15 December 2008.

74 Altova GmbH (2008) DiffDog (Version 2008 rel. 2 sp. 2)
[Computer Software], http://www.altova.com/download/diff
dog/diff_merge_tool.html, accessed 15 December 2008.

75 David, J., Guillet, F., Gras, R. and Briand, H. (2006)
An interactive, asymmetric and extensional method for
matching conceptual hierarchies. EMOI-INTEROP – Open
Interop Workshop on Enterprise Modelling and Ontologies for
Interoperability, Luxembourg, 200, CEUR-WS.org.

76 Bossung, S., Stoeckle, H., Grundy, J., Amor, R. and Hosking,
J. (2004) Automated data mapping specification via schema
heuristics and user interaction. In: V. Wiels and K. Stirewalt (eds.)
19th IEEE International Conference on Automated Software
Engineering (ASE). Linz, Austria. Los Alamitos: IEEE Computer
Society Press, pp. 208–217.

77 Raghavan, A. (2005) Schema mapper: A visualization tool
for incremental semi-automatic mapping-based integration of
heterogeneous collections into archaeological digital libraries:
The ETANA-DL case study. Master’s Thesis, Dept of Computer
Science, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, USA, pp. 66+vii.

78 Ghoniem, M. and Fekete, J-D. (2008) Animating Treemaps. 18th
HCIL Symposium – Workshop on Treemap Implementations
and Applications 2001, University of Maryland, College Park,
Maryland, USA.

79 Wittenburg, K. and Sigman, E. (1997) Visual focusing and
transition techniques in a treeviewer for web information access.
In: G. Tortora (ed.) Visual Languages. Capri Italy: IEEE Computer
Society Press, pp. 20–27.

80 Wilkinson, L. and Friendly, M. (2009) The history of the cluster
heat map. The American Statistician 63(2): 179–184.

81 Eisen, M. (2002) TreeView (Version 1.60) [Computer Software],
http://rana.lbl.gov/downloads/TreeView/.

82 van Ham, F. (2003) Using multilevel call matrices in large
software projects. IEEE InfoVis. Seattle, Washington: IEEE
Computer Society Press, pp. 227–232.

83 Tu, Y. and Shen, H.-W. (2007) Visualizing changes of hierarchical
data using treemaps. IEEE Transactions on Visualization and
Computer Graphics 13(6): 1286–1293.

84 Lee, B., Robertson, G.G., Czerwinski, M. and Parr, C.S.
(2007) CandidTree: Visualizing structural uncertainty in similar
hierarchies. Information Visualization 6(3): 233–246.

85 Isenberg, P. and Carpendale, S. (2007) Interactive tree
comparison for co-located collaborative information
visualization. IEEE Transactions on Visualization and Computer
Graphics 13(6): 1232–1239.

86 Cyberpromote (2009) DiffDaff (Version 1.0) [Computer
Software], http://www.diffdaff.com/, accessed 3 April 2009.

87 Inselberg, A. and Dimsdale, B. (1990) Parallel coordinates: A tool
for visualizing multidimensional geometry. In: A.E. Kaufman
(ed.) IEEE Visualization. San Francisco, CA. Los Alamitos: IEEE
Computer Society Press, pp. 361–378.

88 Wernert, E.A., Berry, D.K., Huffman, J.N. and Stewart, C.A. (2003)
Tree3D – A system for temporal and comparative analysis of
phylogenetic trees. In: C. Plaisant and J.-D. Fekete (eds.) IEEE
InfoVis Poster Compendium. Seattle, Washington: IEEE Computer
Society Press, pp. 114–115.

© 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18 17



Graham and Kennedy

89 Stewart, C.A., Hart, D., Berry, D.K., Olsen, G.J., Wernert, E.A. and
Fischer, W. (2001) Parallel implementation and performance of
fastDNAml – A program for maximum likelihood phylogenetic
inference. ACM/IEEE Conference on Supercomputing, Denver,
CO. New York: ACM/IEEE Computer Society, pp. 20–20.

90 Dwyer, T. and Schreiber, F. (2004) Optimal leaf ordering for
two and a half dimensional phylogenetic tree visualisation.
N. Churcher and C. Churcher (eds.) Australian Symposium on
Information Visualisation, Dunedin, New Zealand, 35, Sydney:
Australian Computer Society, pp. 109–115.

91 Telea, A. and Auber, D. (2008) Code flows: Visualizing structural
evolution of source code. Computer Graphics Forum 27(3):
831–838.

92 Tominski, C., Abello, J. and Schumann, H. (2004) Axes-based
visualizations with radial layouts. In: H. Haddad, A. Omicini,
R.L. Wainwright and L.M. Liebrock (eds.) 19th ACM Symposium
on Applied Computing. Nicosia, Cyprus. New York: ACM Press,
pp. 1242–1247.

93 Chi, E. H., Pitkow, J., Mackinlay, J., Pirolli, P., Gossweiler, R. and
Card, S. K. (1998) Visualizing the evolution of web ecologies.
In: C.M. Karat, A. Lund, J. Coutaz and J. Karat (eds.) ACM CHI.
Los Angeles, CA. New York: ACM Press, pp. 400–407.

94 Spenke, M. and Beilken, C. (2003) Visualisation of trees as highly
compressed tables with InfoZoom. In: C. Plaisant and J.-D.
Fekete (eds.) IEEE InfoVis. Seattle, Washington: IEEE Computer
Society Press, pp. 122–123.

95 Kutz, D. O. (2004) Examining the evolution and distribution
of patent classifications. IEEE Conference on Information
Visualisation. London, UK. Los Alamitos: IEEE Computer Society
Press, pp. 983–988.

96 Morse, D. R., Ytow, N. and Roberts, D. M. (2003) Comparison of
multiple taxonomic hierarchies using TaxoNote. In: C. Plaisant
and J.-D. Fekete (eds.) IEEE InfoVis Poster Compendium. Seattle,
Washington: IEEE Computer Society Press, pp. 126–127.

97 Daida, J.M., Hilss, A.M., Ward, D.J. and Long, S.L. (2005)
Visualizing tree structures in genetic programming. Genetic
Programming and Evolvable Machines 6(1): 79–110.

98 Slack, J., Hildebrand, K. and Munzner, T. (2006) PRISAD:
A partitioned rendering infrastructure for scalable accordion
drawing. Information Visualization 5(2): 137–151.

99 Chevenet, F., Brun, C., Bañuls, A.-L., Jacq, B. and Christen, R.
(2006) TreeDyn: Towards dynamic graphics and annotations for
analyses of trees. BMC Bioinformatics 7: 439.

100 Graham, M., Kennedy, J. and Downey, L. (2006) Visual
comparison and exploration of natural history collections. ACM
AVI. Venice, Italy: ACM Press, pp. 310–313.

101 Card, S.K., Suh, B., Pendleton, B.A., Heer, J. and Bodnar, J.W.
(2006) TimeTree: Exploring time changing hierarchies. In: P.C.
Wong and D. Keim (eds.) IEEE VAST. Baltimore, MO. Los
Alamitos: IEEE Computer Society Press, pp. 3–10.

102 Herman, I., Melançon, G., de Ruiter, M.M. and Delest, M.
(1999) Latour – A tree visualisation system. In: J. Kratochvil,
(ed.) Graph Drawing, Stirin Castle, Prague, Czech Republic,LNCS
1731. Berlin, Heidelberg, Springer-Verlag, pp. 392–399.

103 Wettel, R. and Lanza, M. (2008) Visual exploration of large-
scale system evolution. In: A. Zaidman, M. Di Penta and A.
Hassan (eds.) 15th Working Conference on Reverse Engineering
(WCRE). Antwerp, Belgium. Los Alamitos: IEEE Computer
Society Press, pp. 219–228.

104 Becker, R.A. and Cleveland, W.S. (1987) Brushing scatterplots.
Technometrics 29(2): 127–142.

105 Abello, J. and van Ham, F. (2004) Matrix Zoom: A visual interface
to semi-external graphs. IEEE InfoVis. Austin, TX: IEEE Computer
Society Press, pp. 183–190.

106 Wong, P.C., Foote, H., Mackey, P., Perrine, K. and Chin Jr, G.
(2006) Generating graphs for visual analytics through interactive
sketching. IEEE Transactions on Visualization and Computer
Graphics 12(6): 1386–1398.

107 Florentz, B. and Muecke, T. (2006) Unification and evaluation
of graph drawing algorithms for different application domains.
In: E. Banissi (ed.) International Conference on Information
Visualization. London, UK. Los Alamitos: IEEE Computer Society
Press, pp. 475–482.

108 Mank, F.W.M. (2005) CristalView – The visualization of a Cristal.
Master’s Thesis, Mathematics and Computer Science, Technische
Universiteit Eindhoven, Eindhoven, Netherlands, 2005; pp.
115+v.

109 Burch, M. and Diehl, S. (2006) Trees in a treemap: Visualizing
multiple hierarchies. Visualization and Data Analysis. San Jose,
CA: SPIE Press, 6060, pp. 224–235.

110 D’Ambros, M. and Lanza, M. (2006) Software bugs and evolution:
A visual approach to uncover their relationship. 10th European
Conference on Software Maintenance and Reengineering -- CSMR
2006. Bari, Italy. Los Alamitos: IEEE Computer Society Press,
pp. 227–236.

111 Melançon, G. and Herman, I. (2000) DAG drawing from an
information visualization perspective. In: R. van Liere and W. de
Leeuw (eds.) Eurographics/IEEE TCVG Symposium on Visualization
(VisSym). Amsterdam, The Netherlands. Wien: Springer-Verlag,
pp. 3–12.

112 Reiss, S.P. (1995) An Engine for the 3D visualization of program
information. Journal of Visual Languages and Computing 6(3):
299–323.

113 Amenta, N. and Klingner, J. (2002) Case study: Visualizing sets
of evolutionary trees. IEEE InfoVis. Boston, MA: IEEE Computer
Society Press, pp. 71–74.

114 Hillis, D.M. and Heath, T.A. (2005) St John K Analysis and
Visualization of Tree Space. Systematic Biology 54(3): 471–482.

115 Meyer, J. (2006) A framework for large-scale interactive
visualization of phylogenetic trees. In: J.J Villanueva (ed.)
IASTED International Conference on Visualization, Imaging and
Image Analysis. Palma de Mallorca, Spain. Calgary: ACTA Press,
pp. 122–129.

116 Maddison, W.P. and Maddison, D.R. (2009) Mesquite: A modular
system for evolutionary analysis (Version 1.06) [Computer
Software], http://mesquiteproject.org, accessed 2 April.

117 Graham, M., Kennedy, J.B. and Hand, C.A. (2000) Comparison
of set-based and graph-based visualisations of overlapping
classification hierarchies. ACM AVI. Palermo, Italy: ACM Press,
pp. 41–50.

118 Barlow, T. and Neville, P. (2001) A comparison of 2-D
visualisations of hierarchies. IEEE InfoVis. San Diego, CA: IEEE
Computer Society Press, pp. 131–138.

119 Andrews, K. and Kasanicka, J. (2007) A comparative study
of four hierarchy browsers using the hierarchical visualisation
testing environment (HVTE). In: E. Banissi et al. (eds.) IEEE IV
Conference. Zurich, Switzerland. Los Alamitos: IEEE Computer
Society Press, pp. 81–86.

120 Parunak, H. V. D. (1991) Don’t link me in: Set based hypermedia
for taxonomic reasoning. In: J. Walker (ed.) ACM Hypertext. San
Antonio, TX. New York: ACM Press, pp. 233–242.

18 © 2009 Palgrave Macmillan 1473-8716 Information Visualization 1–18




